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TALK OVERVIEW

» Goual: Introduction to methods used to establish
convergence to equilibrium for Langevin dynamics.

» Two different paths: Probabilistic versus Poincaré:

|- [lrv versus | - ||H(u)~

» Paths cross: Overlaps between the methods.

» Main technical issues: System is degenerately damped;
randomness is also degenerate. Types of potential functions
can make arguments harder (nonsingular vs singular).

» Interfaces statistical mechanics, MCMC, geometry and
Boltzmann.
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DOEBLIN’S CONDITION

Let {X,,} be a Markov chain on state space X

(DC) There exists € € (0,1) and a probability measure n on X
such that

P(x,A) = en(A)

forall x € X, A C X measurable.

> If ¥ ={1,2,...,d} and {X,} irreducible and aperiodic,
then (DC) follows for P := P (e.g. take v(A) = §;(A)).

» If (DC) is not satisfied globally, need return times to a
“small” set where (DC) is true to have exponential
moments (i.e. it takes log time on average to return to
small set). Use of Lyapunov structure.



CONVERGENCE PICTURE !

V — 00 with PV <aV,
ac(0,1)

N\

V=0uv.>1

'Harris '54; Hasminskii ‘80; Meyn, Tweedie '92/’93; Hairer-Mattingly 08:
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EXAMPLE

Stochastic gradient dynamics on R%:
dg; = —VU(q;) dt + V2 dB;.

» B is a standard, d-dimensional Brownian motion;
> U c C®(R%[0,00)) satisfies:
» U(x) — oo as |x| = oo;
> AU — |VU[? < —cU + d for some constants c,d > 0;
> [e U™ dx < oo

Lyapunov structure: We have

d
LU=—|VUP+AU< —cU+d = Ptuge’CtU—i—E.
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EXAMPLE CON’T

Stochastic gradient dynamics on R%:
dg; = —VU(q;) dt + V2 dB;.

Doeblin Condition:

» Fundamental solutions of the Kolmogorov equations
(0r £ L)p =0, (0 £ L*)p = 0 are smooth and strictly
positive on (0, 00) x RY;

» Transition density p;(q,4’) is smooth and strictly positive
on (0,00) x R x R%.

» (DC) follows using Lebesgue measure on a bounded set.

» The e in (DC) is typically existential = quantitative
minorization??

%], Evans "18.
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POINCARE
Stochastic gradient dynamics on R%:
dg; = —VU(q;) dt + V2 dB;.
The process g; has a unique stationary distribution x given by
p(dg) oc e”UD dg.

Let ¢ € L?(u) have pu(p) = 0. WTS that IP'||12(,) = 0as t — oo
exponentially fast. Then
3P ol = (5P'e, Plo) = (LP'o, Py)
= Ju(L(P')?) = VP22,
= *”VPt‘PH%Z(uy



POINCARE?

Note that p satisfies a Poincaré inequality. That is, there exists
p > 0 such that for all ¢ € H' (1) with u(¢) = 0 we have

IV = pllol-
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POINCARE?

Note that p satisfies a Poincaré inequality. That is, there exists
p > 0 such that for all ¢ € H' (1) with u(¢) = 0 we have

IV = pllol-

Combining the above with the formal calculation gives:

YRl = — VPl < —lP@liEa

Hence
IP'ollr20y < €™ llelliz(

» Proofs of Poincaré inequality often use bounds like
—|VU]? < —cU +4d.

3Talay ’00; Eckmann, Hairer '03; Hérau, Nier '04; Helffer;:Nier~05



LANGEVIN DYNAMICS
Consider the following SDE for x; = (g¢,pt) on X C R x RY :

d[]t = Pt dt
dp; = —prdt — VU(q;) dt + /27 dB;.

» B;is a standard d-dimensional Brownian motion,
X = {U(q) < oo} x RY, v > 0is the friction coefficient;
> U € C>®(X;][0,00)) satisfies
> |[VU| - coas U — oo;
> [V2U| < ¢|VU + C..
» Hamiltonian H(g, p) = [p|?/2 + U(q) with stationary

distribution v on X
vl

v(dgdp) o e HP) dgdp = e~ T e U@ dq dp.
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LANGEVIN DYNAMICS

Consider the following SDE for x; = (q¢,p¢) € X C R x R? :

dqt = Pt dt
dp: = —pedt — VU(qs) dt + /2 dB;.
Lyapunov?
» Generator: L=p -V, —qp-V, = VU(q) - V) +7A,.
> LH(q,p) = —lp* + vd.
Poincaré?
> If p € L2(v) with v(p) = 0, then

35 I1P el = (LP, Plo) = =4IV P'oliTa)-

Conclusion: Langevin dynamics is not pointwise contractive.



AVERAGING

Example:d =1, v =1, U(q) =



MORE PARTICLES

Example: d =3, v =1, U(q) = >, g:* + Xz g — 9173



AVERAGING
Example: d =1, v =1, U(q) = 14- + ﬁ

1200

1000

Energy=blue
p2/2:

[ 05 1 15 2 25 3 35

Figure: p(t)%/2 and H(q(t), p(t)) plotted over t € [0,4].

[m} = =



AVERAGING: HOW TO LEVERAGE?

Lyapunov: Let Av(f)(q,p) be the average value of f along
Hamiltonian orbit containing (g, p), and

Then

t t
/O!pslzds=tAV(IP|2)(q,P)+/0 Ips|* — Av(|P|*)(q,p) ds.




AVERAGING: HOW TO LEVERAGE?

Lyapunov: Let Av(f)(q,p) be the average value of f along
Hamiltonian orbit containing (g, p), and

Then

t t
/O!pslzds=tAV(!P|2)(q,P)+/0 Ips|* — Av(|P|*)(q,p) ds.

Use V = H + 1 where v is lower-order and “satisfies”

Hip = |pl* — Av(|PP)(q,p)



THE “pg TRICK”

Ford = 1and U(q) = ¢*"/2n,

H(pg) = (1+n)p* — 2nH(q,p) = (1 + n)p* —

L AV(P)(g.p).



THE “pg TRICK”
Ford = 1and U(q) = ¢*"/2n,

H(pg) = (1+n)p* — 2nH(q,p) = (1 + n)p* — Av(P?)(q,p).

n+1

Polynomial-like potentials (|[V2U| < C|VU|! + D):
» D.Talay "00;
> L. Wu'01;
» Mattingly /Stuart/Higham "02;
> Rey-Bellet "06;

» Zimmer ‘17 and Eberle, Guillin, Zimmer "19.
Different choices of ¢ and general potentials (1 — 2):
» Cooke, H, Mattingly, McKinley, Schmidler "17;

» H, Mattingly "19;
» Lu, Mattingly "20.

u]
]
I
w
i




POINCARE?

Recall for € L?(v) with v(p) =0
t
1P el = Il = =21 [ 19,7l o
so we hope that

t t
L 1Pl ds < [ 19,75l s




POINCARE?

Recall for ¢ € L?(v) with v(p) = 0:
P17

t
[l 72 v) = -2y ”VPPS‘PH%Z(V) ds
0
so we hope that

t
L 1P el ds < [ 19,7l

Idea 1: Follow the flow: If oy

Ploand |- || = | - 2, then
Vil =

<VP‘C§01‘7 Vp¢f>

([Vp, Lo, Vper) + (LVppr, Vpgr)
= (Vg =7Vt Vpor) —

Vil

[m]

&




AVERAGING: HOW TO LEVERAGE THIS?

Idea 1: Follow the flow: If ¢; = Pty and V= Vy =79V, , then
ld
2dt
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AVERAGING: HOW TO LEVERAGE THIS?
Idea 1: Follow the flow: If ¢; = Pty and V= Vy =79V, , then

1d - - - - -
5 a1 Verlt) = (V. Ll Ver) +(LVer, Ver)

= Vel = AIVeVerl = (V2 UVper, Vior)
Hence use the modified H!(v) norm
eIl = cllelifzg, + 2l Vpell® + sl Vel

» Desvillettes, Villani ‘01; Hérau, Nier '04; Hellfer, Nier '05;
Mouhot, Neumann '06, Hérau '07;

» Villani '09;

» Conrad and Grothaus "10; Grothaus and Stilgenbauer "15;
» Baudoin '17, Monmarché "19;

» Cattiaux, Guillin, Monmarché, Zhang 17 and Baudoin,
Gordina, H "21.



DMS: THE DIRECT L?(v) APPROACH

Idea 2: Construct a norm equivalent to L2(v) instead

H‘P”%JréA = ”SOH%Z ) T 0(Ap, p).
¥)
If o1 = Plp and v(p) = 0, then

o (Apr, 1) = (LTA+ AL)pr, pr)

= (AHIIyyr, 1) + R(eyr)
where

Ip(q) = .

T /Rdso(q,r?)e‘pzz dp.
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DMS: THE DIRECT L?(v) APPROACH

Idea 2: Construct a norm equivalent to L2(v) instead:

d
ﬁ(l‘\%@ta or) = (AHILpy, 1) + R(pt),
so pick A = —(HII)' so that

(AHILpr, 1) = —|[HIptl|? = —||p - Vgllarl|* = —c|| VIt
Note: A above is not bounded on L?(v) so need to renormalize:

Ag = (1 (M (WD) (D = By [ e HTo(a.) s
0



DMS: THE DIRECT L?(v) APPROACH

Idea 2: Construct a norm equivalent to L*(v) instead:

Il 54 = ol + 640, 6.

» Hérau '06;

» Dolbeault, Mouhot, Schmeiser ‘09, "15;
» Grothaus and F-Y Wang "19;

» Leimkuhler, Sachs, Stoltz '20;

» Camrud, Gordina, H, Stoltz 21
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DON’T CHANGE THE NORM

Idea 3: Don'’t change the norm!

1

In other words, show that for ¢ € L2(v) with v(¢) = 0

t+1
| 1Pl 5 < lplfae .

Time-averaged Poincaré?

o ) t+7 5
c/t 1P @lIz2(,,) ds S/t IVyP ez, ds




DON’T CHANGE THE NORM

Hormander’s condition:

Let U ¢ R be open, bounded and Xy, X, ..., X, be C>(U)
vector fields. We say that Xo, X1, . . ., X, satisfies Hormander’s
condition on U if for every x € U, the list

le(x)a jle,l,...,r
[Xj,, Xj,] (x), j1,2=0,1,...,r

[X]l[X]27X]3]](x)7 j17j27j3:0717'--7r

contains a basis of RY.



DON’T CHANGE THE NORM

Hormander’s condition:

Let U ¢ R be open, bounded and Xy, X, ..., X, be C>(U)
vector fields. We say that Xo, X1, . . ., X, satisfies Hormander’s
condition on U if for every x € U, the list

le(x)7 jle,l,...,r
[Xj,, Xj,] (x), j1,2=0,1,...,r
[X]l[X]27X]3]](x)7 j17j27j3:0717'--7r

contains a basis of RY.

Example. Xo = pdy — U'(q)9, — pdy and X; = 0p. Note that
(X1, Xo] = 05 — Op.



Theorem (Hormander 1967)

Let K € U and suppose M = Xy + Z;:l X]2 and Xo, X1, ..., X;
satisfies Hormander’s condition on U. Then there exists s, C > 0 such
that

[ulles < COIMullp2 + [|ull12)

forall u € C5°(K).



Theorem (Hormander 1967)

Let K € U and suppose M = Xy + Z;:l X]2 and Xo, X1, ..., X;
satisfies Hormander’s condition on U. Then there exists s, C > 0 such
that

[l < CQIMull 2 + [Jullp2)
forall u € C5°(K).
Actually:

fullse < c(wnum n |||Xou|\|’>,

T
uall| := llulliz+ D I Xjulliz, lulll’ = sup /usodx
ps ligll<1



EXAMPLEINd =1

Question: How does this help?

Example. For Langevin ind = 1 with v =1, ¢; = Plo.

Then
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EXAMPLE INd =1

Question: How does this help?
Example. For Langevin in d = 1 with v = 1, ¢y = P'p. Then

Orpr = Loy = (H + a;%)@t-
Formally setting u = ¢; in estimate on K € U C (0, 00) x R:

el < Clllgrllzz + 10petlliz + 11100 — H)eelll)
< C(letlliz + 10peprllr2)-

Conclusion: Try to obtain Poincaré inequality of the form

c /O I sllizy ds < /0 IV pelliz) s + 1112 — H)arl I,



TIME-DEPENDENT POINCARE INEQUALITIES

Try to obtain time-dependent Poincaré of the form:

c /O lsllizy ds < /0 IV pelli2) s + 1112 — H)erl I,

Y. Guo '02;

Strain and Guo '04;

Albritton, Armstrong, Mourrat and Novack "21;
Cao, Lu and Wang "19;

Bedrossian and Liss '21: 2D Galerkin Navier-Stokes .
Brigatti '22;

Brigatti and Stoltz '23.

vVvvyVvVvVvyyy



THANK YOU!



